S E S 2 0 1 0

Sixth Scientific Conference with International Participation SPACE, ECOLOGY, SAFETY

2-4 November 2010, Sofia, Bulgaria

ВЛИЯНИЕ КОГЕРЕНТНЫХ СТРУКТУР НА ПОВЕДЕНИЕ ФЛУКТУАЦИЙ ЭЛЕКТРИЧЕСКОГО ПОЛЯ В ГРОЗОВОЙ ОБЛАЧНОСТИ

Николай Ерохин^{1,2}, Надежда Зольникова¹, Людмила Михайловская¹, Ирина Краснова², Румен Шкевов³

¹Институт космических исследований — Российская академия наук, Москва
²Российский университет дружбы народов, Москва
³Институт космических и солнечно-земных исследований — Болгарская академия наук e-mail: nerokhin @mx.iki.rssi.ru; shkevov @space.bas.bg

Ключевые слова: грозовая облачность, электрические флуктуации, структурные функции, скейлинговая экспонента, инерционные интервалы, высотный профиль электрического поля, когерентные структуры, зондовые измерения.

Абстракт: Рассмотрены структурные функции $S_m(L)$ для вертикального распределения электрического поля в грозовой облачности. Для расчетов использованы данные зондовых измерений поля E(z) в атмосфере на высотах z ниже 16 km. На основе системы локализованных функций разработаны аналитические аппроксимации $E_a(z)$ экспериментальных графиков E(z). Зависимости структурных функций $S_m(L)$ от масштаба L вычислены для различных порядков m с пространственным разрешением $\delta z=3$ метра, которые демонстрируют присутствие электрических $\dot{\phi}$ луктуаций большой амплитуды на масштабах L \sim (10÷500) m, а также наличие когерентных структур (КС) в электрической турбулентности. На графиках $S_m(L)$ выявлены два инерционных интервала для электрических флуктуаций и для них получены скейлинговые экспоненты g(m). Скейлинговые экспоненты отличаются как от Колмогоровского закона $g_k(m)=m/3$, так и от спирального скейлинга $q_h(m) = 2 \ m \ / \ 3$. Наблюдаемые отличия от степенной зависимости $S_m(L)$ в инерционных интервалах могут быть обусловлены присутствием когерентных электрических структур. Проведенное модельное исследование показало, что присутствие КС в электрической турбулентности будет модифицировать, в частности, наклоны кривых $S_m(L)$ (в log-log координатах), а также увеличивать автокорреляционную функцию на малых масштабах. Вклад КС наиболее сушественен на масштабах порядка характерной ширины КС. Влияние КС на поведение структурных функций более ясно проявляется в графиках так называемых относительных структурных функций.

COHERENT STRUCTURES INFLUENCE ON ELECTRIC FIELD BEHAVIOURAL FLUCTUATIONS IN THUNDERSTORM CLOUDS

Nikolay Erokhin^{1,2}, Nadezhda Zolnikova¹, Ludmila Mikhailovskaya¹, Irina Krasnova², Rumen Shkevov³

¹Space Research Institute – Russian Academy of Sciences, Moscow
²Russian University of People Friendship, Moscow
³Space and Solar-Terrestrial Research Institute – Bulgarian Academy of Sciences e-mail: nerokhin@mx.iki.rssi.ru; shkevov@space.bas.bg

Key words: thunderstorm clouds, electric fluctuations, structure functions, scaling exponent, inertial intervals, electric field height profile, coherent structures, probe measurements.

Abstract: The structure functions $S_m(L)$ for the vertical distributions of the electric field E(z) in thunderstorm clouds have been studied. The field E(z) measured at atmosphere height range z below 16 km is used as basic data. The analytical approximation $E_a(z)$ of the experimental plot E(z) has been elaborated by means of localized functions. The structure functions $S_m(L)$ plots' dependence on the scale L are calculated for the different values m with spatial resolution $\delta z = 3$ meters. These functions demonstrate large amplitude electric fluctuations at scales $L \sim (10 \div 500)$ m and the presence of coherent electric structures (CS) in the electric turbulence. Two inertial intervals of electric fluctuations are revealed and the scaling exponents g(m) for the structure functions $S_m(L)$ are obtained. The scaling exponents differ significantly from both the Kolmogorov law

 $g_k(m) = m / 3$ and the helical one $g_h(m) = 2 \ m / 3$. Some variations from the power law dependence may be conditioned probably by the presence of coherent electric structures. This analysis has shown that the CS-presence in electric turbulence will result in structure functions' modification: the slopes of the $S_m(L)$ curves (at log-log plots) will be changed, while in the small-scale range, the autocorrelation function will increase. The CS-contribution is the most essential at scales of the typical CS width order. The CS influence on the SF-behaviour is most markedly expressed on the plots of the so-called relative structure functions.

Введение

Изучение структурных характеристик хаотизированных полей представляет интерес для ряда практических приложений, например, исследований тепло- и массо переноса в пограничном слое атмосферы, для анализа механизмов возбуждения и поддержания неоднородных крупномасштабных течений в околоземном пространстве, физики МГДтурбулентности в плазме солнечного ветра, исследований процессов формирования интенсивных крупномасштабных вихревых структур типа тайфунов, для прогнозирования распространения пассивных примесей и развития кризисных явлений, для мониторинга геофизических полей космическими средствами, для современных методов обработки данных дистанционного зондирования геофизической среды и корректной физической интерпретации ее результатов (см.например, работы [1-10]). Это весьма важно и для разработки современных методик регионального прогнозирования интенсивных вихревых структур, поиска возможностей воздействия на их развитие и пространственную динамику. При исследовании структурных свойств хаотизированных геофизических полей в настоящее время широко используется анализ структурных функций (СФ) с определением таких характеристик как, статистическая стационарность, перемежаемость, спектральные индексы, обобщенные скейлинговые экспоненты и др. на заданном массиве данных измерений [5-9]. Кроме получения статистических параметров при обработке данных важно выявить наличие когерентных структур, которые могут существенно влиять на динамику процессов, в частности, транспортные явления, генерацию крупных вихрей, гидродинамическое сопротивление и пр. В данном докладе представлены результаты анализа электрической турбулентности в грозовой облачности и возможного влияния когерентных структур на параметры структурных функций.

Постановка задачи и численные расчеты

Как известно (см., например, [2,3,4,10]), наличие спиральности $H = \mathbf{v} \cdot \text{rot } \mathbf{v}$ в атмосферных вихрях и плазме повышает их устойчивость к возмущениям и увеличивает время существования. Кроме того, спиральность Н способствует возникновению обратного каскада энергии от малых масштабов в крупные, в результате возможно, например, усиление слабых синоптических возмущений до уровня мощных циклонов. Анализ возможных механизмов генерации спиральных движений в приложении к интенсивным атмосферным вихрям показывает, что для корректного описания этого процесса необходимо учитывать вклад заряженных подсистем грозовых облаков как в формирование самосогласованной, существенно неоднородной структуры ветровых потоков, так и в их последующую нелинейную динамику (см., в частности, [11]). Имеющиеся в литературе экспериментальные данные о вертикальных профилях электрического поля Е_z(z) в грозовой облачности (см., например, [12-14]) указывают на присутствие достаточно сильных электрических флуктуаций с типичными размерами (10÷500) m и напряженностями поля порядка 10⁵ В/м и более. Поэтому для корректных оценок вклада заряженных подсистем в генерацию спиральных движений атмосферы необходимо изучать параметры электрических флуктуаций, в частности, исследовать свойства структурных функций $S_m(L)$, где $L = z_1 - z_2$ разность высот двух атмосферных слоев (сдвиг). Ниже используя стандартные подходы анализа гидродинамической турбулентности [3-9] рассмотрены свойства структурных функций $S_m(L)$ для электрического поля Е₂(z) в грозовой облачности. Основой для анализа являются экспериментальные графики поля $E_z(z)$ для области высот z < h ниже 16 km. Проводится оцифровка этих графиков и разработка аналитических аппроксимаций $E_a(z)$ в классе локализованных функций типа $b_n(z)$ = $a_n I [1 + k_n^2 (z - z_n)^2]$ с параметрами a_n , k_n и z_n . Таким образом получается выборка $E_i = E_a(z_i)$. Затем на ее основе численно вычисляются структурные функции $S_m(L)$ порядка m согласно формуле $S_m(L) = \langle | E_a(z_i + L) - E_a(z_i) |^m \rangle$, где $z_i = \lambda i$, $\lambda = 3$ m для интервала высот z < h, $1 \le i \le N$, $N = h / \lambda$, а пространственное усреднение проводится в области 0 < z < h - L. Как обычно полагается, что $\lambda < L < h / 3$. Следует отметить, что полученные аналитические аппроксимации могут быть использованы также для определения высотных профилей, например, электрического потенциала и объемной плотности электрического заряда.

Зависимость $S_m(L)$ от масштаба L для различных значений порядка m представ-ляется на графиках в lg-lg координатах. Эти графики показывают наличие в электрической турбулентности двух инерционных интервалов, в которых имеется линейная зависимость между $lg\ S_m(L)$ и $lg\ L$. Следовательно, в инерционных интервалах наблюдаются степенные скейлинги типа $S_m(L) \sim L^{g(m)}$, где g(m) скейлинговая экспонента. Для m=1 получаем индекс Херста H = g(1), а индекс спектра мощности турбулентных флуктуаций α выражается через g(2)и равен $\alpha = 1 + q(2)$. Экспериментальные данные по высотным профилям электри-ческого поля взяты из работ [13, 14]. Аналитическая аппроксимация E(z) содержит сумму локализованных функций $r_n(z)$: $E_a(z) = \sum_n r_n$, где $r_n(z) = \sum_j b_{nj}$, $b_{nj}(z) = a_{nj}$ / [1 + k_{nj}^2 ($z - z_{nj}$)²]. Здесь коэффициенты ani и высота z измеряются соответственно в кВ/m и km. Для упрощения записи $S_m(L)$ введем положение і–слоя $z_i(km) = 0.194 + 0.003(i-1)$, где i = 1, 2 ... N, N = 4307. Таким образом $L_n(km) = 0.003$ n, где n = 1, 21437. Следовательно имеем $S_m(L) \equiv S_m(n)$, $E(z_i) \equiv E_i$. В итоге $S_m(n)$ записывается выражением $S_m(n) = \sum_i | E_i - E_{i+n} |^m / (N-n)$, а графики структурных функций $S_m(n)$ приводим как их зависимости от безразмерного сдвига по высоте $n = L / 3 \cdot m$. На рис.1 в Ig-Ig координатах они даны для значений порядка структурных функций (СФ) m = 0.5, 1, 2, 3, 5. Для лучшего сравнения графиков используем нормированные СФ: $W_m(n) = S_m(n) / S_m(1)$ т.е. выполняется условие $W_m(1) = 1$.

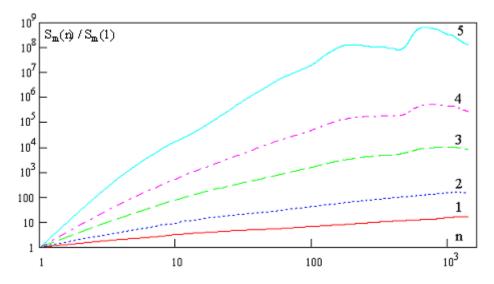


Рис.1. Графики структурных функций

Согласно рис.1 насыщение роста $S_m(n)$ при увеличении высотного сдвига n происходит на масштабах $L_m \sim (555 \div 3000)$ m и зависит от значения m. Например, для случая m=1 насыщение СФ имеет место для масштабов $L_1 > 3000$ m. Как видно из рис.1, масштаб L_m уменьшается c ростом порядка m. Другое заключение касается наличия инерционных интервалов для электрических флуктуаций. Согласно рис.1 имеются два инерционных интервала: первый — на малых масштабах L < 50 m, а второй в области средних масштабов, где L < 1300 m для порядков m > 2. Отметим зависимость положения инерционных интервалов от порядка СФ. Например, $S_m(n)$ и ее аппроксимации представлены на рис.2 в случае m=0.5, где кривая 1 отображает $S_m(n)$, кривые 2 и 3 соответствуют аппроксимациям $S_m(n)$ на малых и средних масштабах.

Такое поведение структурных функций $S_m(n)$ может быть обусловлено наличием когерентных структур в атмосферной электрической турбулентности на малых и средних масштабах. Это заключение вытекает из численного анализа модели турбулентности, имеющей два степенных спектра флуктуаций на малых и средних масштабах и некоторое количество когерентных структур на средних масштабах, которые локализованы по высоте z и имеют умеренные амплитуды.

Путем численных расчетов и аппроксимаций структурных функций $S_m(n)$ были получены скейлинговые экспоненты: $g_1(m)$ для малых масштабов и $g_2(m)$ для средних масштабов. Они приведены на рис.3. Мы видим, что скейлинговая экспонента $g_1(m)$ весьма близка к линейной функции. Приведем аналитические аппроксимации для скейлинговых функций: $g_1(m) \approx 0.943$ m, $g_2(m) \approx 0.614$ m. Эти аппроксимации были сделаны на основе численных расчетов СФ для порядков $m=0.1,\ 0.2,\ 0.4,\ 0.5,\ 0.6,\ 0.8,\ 1,\ 1.4,\ 1.7,\ 2,\ 2.4,\ 2.7,\ 3,\ 3.4,\ 3.7,\ 4,\ 4.4,\ 4.7,\ 5,\ 5.4,\ 5.7,\ 6,\ 6.4,\ 6.7,\ 7$

Здесь следует отметить, что в случае однородной, изотропной гидродинамической турбулентности (без перемежаемости) Колмогоровский скейлинг имеет вид $g_k(m) = m / 3$. Для однородной, спиральной, гидродинамической турбулентности в отсутствие перемежаемости получено [10] $g_h(m) = 2m / 3$.

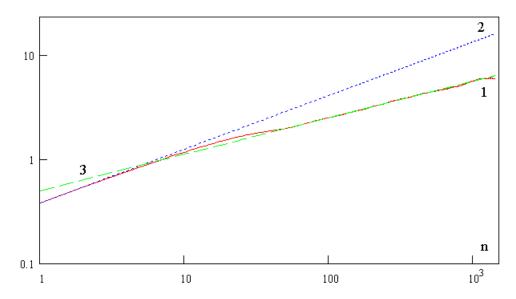


Рис. 2. Структурная функция $S_{0.5}(n)$ и ее аналитические аппроксимации в инерционных интервалах

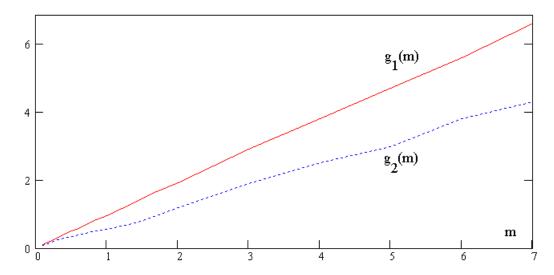


Рис. 3. Скейлинговые экспоненты для малых $g_1(m)$ и средних $g_2(m)$ масштабов

Для исследования турбулентности с инерционным интервалом в присутствии когерентных структур массив геофизических данных для турбулентности моделировался рядом следующего вида

- (1) $y(i) = \sum_k b_k \sin[(2\pi i k / M) + \Psi_k], k = 1, 2 \dots M, i = 1, 2 \dots N$.
- В (1) для фаз гармоник Ψ_k использовались случайная выборка из интервала (π , π) либо аналитическое представление типа
- (2) $\Psi_k = 0.5 \cdot \pi \cdot \cos(\pi \cdot k) + 6.7 \cdot \sin(2.1 \cdot k) + 5.67 \cdot \sin(1.71 \cdot k) + 4.64 \cdot \sin(1.49 \cdot k) + 3.61 \cdot \sin(1.31 \cdot k)$.

Распределение амплитуд гармоник b_k в турбулентности принималось степенным следующего вида $b_k = b_0 \ / \ k^\beta$ с экспонентой β . Для описания профиля локализованных когерентных структур использовались функции $\delta y_m(i) = A_m \ / \ [1 + \chi_m \cdot (i - a_m)^2]$, где $A_m -$ амплитуда возмущения, a_m - положение центра КС, параметр χ_m определяет полуширину $\Delta i = 1 \ / \ \chi_m^{-1/2}$ когерентной структуры.

Рассмотрим вариант с быстроспадающим спектром флуктуаций, когда β = 7 / 6 , b_0 = 1, N = M = 2000, когда max y(i) \approx 1.54. Добавим к полю y(i) крупномасштабную КС с параметрами A_1 = A_2 = A_3 = A_4 = 0.4 , a_1 = 500, a_2 = 911, a_3 = 1319, a_4 = 1607, χ_m = 3 \cdot 10 $^{-6}$, $\Delta i \approx$ 577 причем

имеем max $\delta y \approx 1.13$. Вычисление структурных функций (1) для фонового поля y(i) и с учетом вклада крупномасштабной структуры z(i) = y(i) + $\sum_m \delta y_m(i)$ показывает, что при добавлении крупномасштабной КС ее влияние заметно только на больших масштабах n > 500. Для структурной функции 4-го порядка $S_4(n)$ аналитическая аппроксимация имеет вид $S_4(n) \approx 1.33 \cdot 10^{-6} \cdot n^{2,8} / [1 + (n/50)^{1,2}]$.

Для анализа влияния более мелкомасштабных КС добавим к фоновому полю y(i) четыре когерентных структуры с параметрами $A_1=1.2,\,A_2=1.07,\,A_3=0.91,\,A_4=0.83,\,a_1=371,\,a_2=713,\,a_3=1201,\,a_4=1547,\,\,\chi_m=0.001,\,\,\Delta i\approx 32,\,$ причем max $\delta y\approx 1.21.$ Графики переменных $z(i),\,y(i)$ приведены на рис.4. Вычисление структурных функций с учетом вклада в $S_m(n)$ мелкомасштабных КС приводит к следующим результатам. Распределенные по длине выборки КС дают систематическое увеличение наклона СФ в log-log масштабах. Для структурной функции $S_1(n)$ это область $n<164,\,$ в случае $S_4(n)$ область несколько уже n<100. Аналитическая аппроксимация $S_1(n)$ для поля y(i) имеет вид $S_1(n)\approx 0.0216\cdot n^{0.71},\,$ а для поля z(i) определена формулой $S_1(n)\approx 0.0216\cdot n^{0.65}.$ Структурные функции 4-го порядка имеют аппроксимации : $S_4(n)\approx 1.33\cdot 10^{-6}\cdot n^{2.64}$ для поля y(i) и $S_4(n)\approx 1.54\cdot 10^{-6}\cdot n^{2.86}$ для поля z(i). Аналогичные результаты получаются при выборе для фаз гармоник указанных выше аналитических аппроксимаций. В log-log масштабах различия структурных функций для полей $y(i),\,z(i)$ будут невелики. Более наглядными оказываются графики функций Q1(n) = $S_2(n)$ / $S_2(n)$, $S_2(n)$, являющихся отношениями $S_1(n)$ и $S_4(n)$ для полей $S_2(n)$ для отношениями $S_1(n)$ и $S_2(n)$ для полей $S_2(n)$ для отношениями структурных функций существенны на малых $S_2(n)$ для полей $S_2(n)$ для отношениями структурных функций существенны на малых $S_2(n)$ для полей $S_2(n)$ для отношениями структурных функций существенны на малых $S_2(n)$ для полей $S_2(n)$ для полей $S_2(n)$ дольновыборки. Аналогичным методом исследуется влияние КС на структурные функции СФ при наличии двух инерционных интервалов турбулентности.

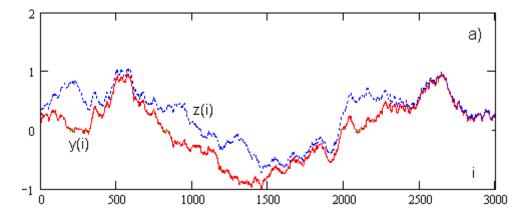


Рис. 4. Графики выборки y(i) для фоновой турбулентности и z(i) с учетом КС

Заключение

Результаты проведенного анализа состоят в следующем. Используя экспериментальные данные по высотному профилю электрического поля в грозовой облачности исследованы структурные функции электрических флуктуаций. Выявлены два инерционных интервала на малых и средних масштабах, в которых наблюдаются степенные скейлинги $S_m(n)$, вычислены скейлинговые экспоненты g(m), отличающиеся от колмогоровского и спирального скейлингов. Разработаны аналитические аппроксимации для $S_m(n)$ в инерционных интервалах. Указано, что некоторое отличие графиков $S_m(n)$ от степенных профилей может быть обусловлено наличием когерентных структур умеренной амплитуды на средних масштабах. Кроме того может проявляться перемежаемость электрической турбулентности (модель турбулентности солнечного ветра с учетом перемежаемости рассматривалась в [5]).

Проведено моделирование геофизической турбулентности с включением когерентных структур. Проведенный анализ показывает, что присутствие локализованных когерентных структур модифицирует структурные функции геофизического поля, так на графиках СФ в Ig-Ig масштабе меняются средние наклоны кривых. Поскольку обычно в основной части масштабов профиль СФ близок к степенному учет КС увеличивает экспоненту структурной функции. Вычисления также показывают, что на малых масштабах при наличии КС возрастает автокорреляционная функция сигнала. Вклад КС наиболее существенен на масштабах α 0 порядка характерного размера КС. С уменьшением спектрального индекса фоновых флуктуаций α 1 (при неизменных прочих параметрах задачи) вклад КС в СФ несколько снижается.

Данное исследование представляет интерес, в частности, для разработки упрощенных физико-математических моделей интенсивных вихрей типа тайфунов, дальнейшего развития схем параметризации при численных расчетах динамики ураганов с включением эффектов влияния заряженных подсистем на нелинейную эволюцию мощного вихря.

Работа выполнена при поддержке Отделения физических наук РАН в рамках программы ОФН-11.

Литература:

- 1. Барышникова, Ю. С., Г. М. Заславский, Е. А. Лупян и др. Исследование Земли из космоса, 1989, № 1, с.17.
- 2. Lazarev, A. A., S. S. Moiseev. Geophysical Precursors of Early Stages of Cyclogenesis. Preprint IKI RAS, Pr- 1844, 1990.
- 3. E р о x и н, H. C., C. C. M о и c е е в. Проблемы геофизики XXI века", М:. Наука, 2003, т.1, с.160.
- 4. B r a n o v e r, H., A. E i d e l m a n, E. G o l b r a i k h and S. Moiseev Turbulence and Structures. Chaos, Fluctuations and Self-organization in Nature and in the Laboratory, San-Diego, Academic Press, 1998, 270 n
- 5. Marsh, E., C. Y. Tu. Nonlinear Processes in Geophysics, 1997, v.4, No 1, p.101.
- 6. Horbury, T. S., A. Balogh. Nonlinear Processes in Geophysics, 1997, v.4, No 3, p.185.
- 7. Schertzer, D., S. Lovejov, F. Schmitt et al. Fractals, 1997, v.5, No 3, p.427.
- 8. Osborne, A. R., A. Provenzale. Physica D, 1989, v.35, No 2, p.357.
- 9. Litvinenko, L. N., V. B. Ryabov, P. V. Usik et al. Correlation Dimension: The New Tool in Astrophysics. Institute of Radio Astronomy, Academy of Sciences of Ukraine, Preprint No 64, Kharkov, 1992, 53 p.
- 10. Моисеев, С. С., О. Г. Чхетиани. ЖЭТФ, 1996, т.110, вып.1(7), с.357.
- 11. Arteha, S. N., E. Golbraikh, N. S. Erokhin. Problems of Atomic Science and Technique, 2003, № 4, p.94.
- 12. Marshak, A., A. Davies, W. Wiscombe et al. Journal of Atmospherical Sciences, 1997, v.54, No 11, p.1423.
- 13. Byrne, G. J., A. A. Few and M. F. Stewart. Journal of Geophysical Research, 1989, v.94, No D5, p.6297.
- 14. Marshall, T. C. and W. D. Rust. Journal of Geophysical Research, 1995, v.100, p.1001.